The Fundamental Theorem of Poker...
..."is a principle first articulated by David Sklansky that he believes expresses the essential nature of poker as a game of decision-making in the face of incomplete information.
"Every time you play a hand differently from the way you would have played it if you could see all your opponents' cards, they gain; and every time you play your hand the same way you would have played it if you could see all their cards, they lose.
Conversely, every time opponents play their hands differently from the way they would have if they could see all your cards, you gain; and every time they play their hands the same way they would have played if they could see all your cards, you lose."
"The Fundamental Theorem is stated in common language, but its formulation is based on mathematical reasoning. Each decision that is made in poker can be analyzed in terms of the concept of expected value. The expected value expresses the average payoff of a decision if the decision is made a large number of times. The correct decision to make in a given situation is the decision that has the largest expected value. (Although sometimes it is correct not to choose this decision for the larger goal of long-term deception.) If you could see all your opponents' cards, you would always be able to calculate the correct decision with mathematical certainty. (This is certainly true heads-up, but is not always true in multi-way pots.) The less you deviate from these correct decisions, the better your expected long-term results. This is the mathematical expression of the Fundamental Theorem."
While there are a couple of things I would disagree with myself this is an extremely powerful couple of paragraphs. In the light of the rash of bad beats I have taken in the last few weeks I would suggest we keep in mind that every once in a while you can do everything right and still get squashed as the poker gods joyride laughing across your table. --PB--
0 Comments:
Post a Comment
<< Home